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Two different classification schemes have been used for concise characterization of magnetic structures: 
one (called here CI') making use of magnetic groups, and another, more recent (called here C2), in 
which representations of space groups play an essential part. While the mathematical principles of C 1' 
have already been formulated in all their generality, this is not so in the case of C2 (although many 
magnetic structures have been discussed from the point of view of C2). In this paper the principles of 
C2 are formulated in a mathematically general way, a link between C 1' and C2 is established, and a few 
illustrative examples of magnetic structures are discussed. It turns out that C I' and C2 are equivalent 
in a precise mathematical sense, provided cyclic boundary conditions are imposed on the crystal; each 
magnetic structure has then its appropriate label in both classifications. If, however, one is not willing 
to impose such conditions, C2 may in some cases (as for example helical structures) meet with mathe- 
matical difficulties while CI '  never does. Claims made by Bertaut (Acta Cryst. (1968). A24, 217) that 
C2 is 'more general' than CI '  are thus unjustified. 

1. Introduction 

The phrase magnetic structure has many connotations 
in solid state physics. When discussing the problem of 
classification of magnetic structures we will take this 
phrase to mean nothing else than an axial vector func- 
tion that changes sign under time inversion and is de- 
fined on a set of points ( 'atoms') which form an ideal 
crystal, or any other atom arrangement. To stress that 
only this particular meaning is to be attached to the 
term magnetic structure, we shall most of the time use 
instead of it the term spin arrangement, and shall call, 
as is customary, the vectors spin vectors. 

An assignment of a label to each spin arrangement 
is called here a classification of all spin arrangements 
if 
(a) the label characterizes the spin arrangement com- 

pletely; that is, the label allows one, from the infor- 
mation contained in it, to construct the whole 
spin arrangement; 

(b) one obtains a list of all spin arrangements by letting 

* Present address: Institut de physique th6orique, Univer- 
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the symbols occurring in the label vary over a speci- 
fied class of symbols. 

The problem of classification of all spin arrange- 
ments is thus a special case of the general mathematical 
problem of classification of all (scalar or vector or ten- 
sor etc.) functions defined on a discrete set of points. 

If one applies an element of the space group F of a 
crystal to a scalar or vector function defined on it, then 
the function will either remain unchanged or be trans- 
formed into another function defined on the came crys- 
tal. This trivial remark makes it clear that there are 
two obvious ways of classifying all such functions: (1) 
by assigning to each function the subgroup H of F con- 
sisting of all those elements of F which leave the func- 
tion unchanged (we shall call this classification C 1); (2) 
by assigning to each function all those distinct func- 
tions which arise from it by applying the elements of  
I=; this is equivalent to assigning a permutation repre- 
sentation of F according to which those distinct func- 
tions transform, or, as it will turn out, an appropriate 
component of such representation (we shall call this 
classification C2). 

If  a function changes sign under time inversion, as 
spin arrangements do, classification C1 can be use- 
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fully replaced, as is well known, by a classification (to 
be called here classification C I') in which the role of 
F is taken over by the direct product group F × A, 
where A is the time-inversion group, and the role of H 
by a subgroup of F x A which is some magnetic group 
m. (One could consider of course still another classi- 
fication, classification C2', which is in the same relation 
to C2 as C I' is to C1, but it turns out that C2' is a 
trivial modification of C2, not worth further consid- 
eration). 

The idea of classification C I' of spin arrangements 
seems to have first been proposed by Landau & 
Lifshitz (1951). Donnay, Corliss, Donnay, Elliott & 
Hastings (1958) and Le Corre (1958) were the first to 
assign (in the sense of C 1') magnetic groups to magne- 
tic structures as determined experimentally, after Be- 
lov, Neronova & Smirnova (1955) established a list of 
all magnetic space groups (called by them 'Shubnikov 
groups'). 

In all their generality the group theoretical princi- 
ples of classification C 1' of all spin arrangements on 
crystals have been formulated by Opechowski & Guc- 
cione (1965), who have shown that every spin arrange- 
ment, however low its symmetry group may be, has 
its appropriate place in CI '  (in particular, this is true 
of helical spin arrangements). 

The principles of classification C2 have never been 
formulated in an equally general manner. We present 
such a formulation in this paper. We also consider and 
answer the question, to which extent the two classifi- 
cations, C 1' and C2, can be regarded as equivalent in 
a precise mathematical sense. 

An extensive paper on this subject has recently been 
published by Bertaut (1968), who strongly advocates 
classification C2 (he calls it 'representation analysis 
of magnetic structures'; it should be added that he 
often means by this phrase more than just a classifi- 
cation of magnetic structures). Although representa- 
tions of space groups have already been used earlier in 
this connexion (Bertaut, 1963; Alexander, 1962) it is 
only in that paper that, for the first time, the general 
idea of C2 is sketched and explained by means of a 
few examples. However, Bertaut's presentation of C2 
is by far not general enough to make a valid compari- 
son between C2 and C I' possible. Despite that, Ber- 
taut did attempt such a comparison, and arrived at a 
conclusion which he reaffirmed in a more recent paper 
(Bertaut, 1969) in these words : ' . . ,  surprisingly enough, 
this new point of view' - this is C2 - 'offers  a wider 
frame for the description and analysis of magnetic 
structures than invariance under Shubnikov groups. 
It can be shown indeed that Shubnikov groups can only 
describe magnetic structures which belong to one-di- 
mensional real representations of the 230 space groups. 
In our theory there is no limitation either on the nature, 
real or complex, nor on the dimension of the irredu- 
cible representation'. 

Since Bertaut has not pointed out any specific errors 
in the general formulation of C 1', one is very much 

puzzled by this conclusion. The solution of the puzzle 
is that what Bertaut finds 'surprising' is simply not 
true; see examples 2 and 3 in § 6. A possible reason for 
Bertaut's conclusion is discussed in § 6, example 1. 

The plan of this paper is as follows. In § 2, after pre- 
liminaries concerning notation and terminology, we 
formulate four elementary group theoretical lemmas 
which we shall repeatedly use. In § 3, we briefly discuss, 
as an introduction to the subject, classification C1 of 
scalar functions defined on any atom arrangement. In 
§ 4, we concentrate our attention on scalar and vector 
functions which change sign under time inversion, 
hence in particular on spin arrangements, and we pre- 
sent the principles of C I' in a form convenient for 
comparison with C2. In § 5 we formulate the principles 
of C2 in a general way for any scalar or vector function 
defined on any atom arrangement. In § 6 we formu- 
late and discuss the relation between CI '  and C2; we 
also illustrate it with examples. Finally, we summa- 
rize our general conclusions. 

2. Preliminaries 

We begin with a few preliminary remarks concerning 
some notations, terminology and conventions used in 
this paper. 

A definite choice of a Cartesian coordinate system 
in the three-dimensional Euclidean space will always 
be understood without, in general, being specified ex- 
plicitly. A discrete set of points {rl, rz, . . . } ,  where 
re(k = 1,2, . . . )  stands for the 3 coordinates of a point, 
will be referred to as an atom arrangement of identical 
atoms, provided the number of points in any finite 
domain is finite. If the set is finite we shall call it a 
molecule (consisting of identical atoms located at rl, 
r2, • . .). 

As is well known, an element K of any finite or in- 
finite group K of isometries is always of the form 
(RIv), where R is a (proper or improper) rotation and 
v is a translation. Applying K to r means replacing r by 
another point ( 'atom')which will be denoted by Kr or 
(RIv) r or Rr + v where R is a 3 x 3 matrix, r and v are 
3-row column matrices. 

If an atom arrangement {rl, r2, . . . }  can be gen- 
erated by applying to one of its atoms, rl say, all ele- 
ments of K in turn, it will be denoted by Kr~ and called 
a simple atom arrangement. We shall speak, in parti- 
cular, of simple molecules and simple crystals, the latter 
being atom arrangements Fr, where F is any space 
group. A simple crystal is thus a crystal whose atoms 
occupy one set of 'equivalent positions' in the sense 
of International Tables of X-ray Crystallography 
(1952). An arbitrary (composite) atom arrangement 
can always be considered as consisting of a finite num- 
ber of interlocking simple atom arrangements. 

An atom arrangement A is called invariant under an 
isometry K if {Krx, Krz . . . .  }= { r l ,  r z ,  . . .  }, that is, if 
the effect of K on A is a permutation of its atoms. The 
group G of all those isometries under which A is in- 
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variant is called its symmdtry group. If Kr is a simple 
atom arrangement, and 13 its symmetry group, then 
Kr= 13r and G___ K. When denoting a simple atom 
arrangement by Gr we shall always tacitly assume that 
G has been chosen to be its symmetry group. 

The set of all those elements G of the symmetry 
group G of an atom arrangement {rl, r 2 , . . . }  for 
which Gre = re  forms a subgroup of 13 to be called the 
site group of (the atom at) re and denoted by G(re). 
Site groups of the atoms of a simple atom arrangement 
A are conjugate subgroups of the symmetry group 
of A. 

We will make use of the following lemmas: 
L1 : Quite generally, if 

K= K(r~)+/<2 K(r,)+ "g3 K(r,)+... 
is the decomposition of K into left-cosets of K(rt) then 
for any two distinct left-cosets K~ K(rl) and K# K(rl), 
0~¢fl, the sets of atoms K~ K(rl) rl and K# K(rl) rl of the 
atom arrangement Krt have no atoms in common. 
Hence the number of atoms of the atom arrangement 
is equal to the index of K(rl) in K, which may of course 
be finite or infinite. 

L2: On the other hand, if k is an arbitrary sub- 
group of K and if 

K= L+ LK2+ LK3 + . . .  

is the decomposition of K into right-cosets of L, then 
any two sets of atoms kK~r and LK#r are either iden- 
tical or have no atoms in common. Furthermore, if L 
is of index I' in K, we may write by omitting redundant 
cosets 

Kr = Lr + LK2r + . . .  + LKz,,r, l "  < l ' .  

That means that the atom arrangement Kr can also 
be regarded as composed of l "  interlocking simple 
atom arrangements generated by k from the atoms 
located at r, K2r . . . .  , Kwr. 

L3: Each subgroup L of an arbitrary finite or in- 
finite discrete group K generates a representation of 
that group, a transitive permutation representation 
PL [see for example Speiser (1956)]. To obtain Pt. one 
simply makes correspond to an element K of K the 
permutation Pt  (K), 

(LIK LK2 LK3 . . .  
LK2K I K3K. ) 

of the right-cosets of L in K. One then shows that 
PL(K~)PL(KB)=PL(Ky) if K~K#=Ky. From such a re- 
presentation of K by permutations one obtains a repre- 
sentation of K by matrices as follows: if LK~K= I.K# 
(0c= 1,2, . . . )  then one makes correspond to the ele- 
ment K of K the matrix whose c~th row consists of 
zeros except for the entry in the flth column which 
is unity. The dimension of the matrix representation 
so obtained is equal to the index of k in K. Hencefor- 
ward 'permutation representation' will always mean 
such a matrix representation; it will be denoted as 
before by Pt  and its matrices by PL(K). A permutation 

representation is never irreducible (except in the trivial 
case k = K). 

L4: Let A be a (reducible or irreducible) d-dimen- 
sional representation of a group K, and bl, b2 . . . .  ba 
be a basis in the carrier space of A such that 

d 

Kb,= Z bB (K)p,. 
B=l 

Then a = albl + a2b2 + . . .  + aaba is a vector invariant 
under a subgroup k of K if an only if 

d 

B=I 

for all elements L of k. 
Finally, we would like to emphasize that we do not 

attach the same meaning to the two expressions 'd 
functions form a basis in the carrier space of the repre- 
sentation d '  and 'd functions transform according to 
the representation A'. The former implies that the d 
functions are linearly independent, whereas the latter 
does not. 

3. Classification C1 

Let us consider a simple atom arrangement Gr l=  
{rb r2, . . .  }. Let us denote the orders of G and G(rl) 
by g and s, and the index of 13(rl) in G by n; g and n 
may be infinite but s is always finite" g/s=n. 

Scalar functions 
We now consider an arbitrary (real or complex) 

function f(r )  defined on 13rl, and the effect of applying 
the elements of (3 to it. This means as usual replacing 
the function f(r )  by the function f(G-~r), to be denoted 
by Gf(r), that is 

Gf(r) = f ( a - l r ) .  (3.1) 

If Hf(r)=f(r), where H is in 13, the function f ( r )  is 
said to be invariant under H, and H is said to be a sym- 
metry element off(r). The set of all symmetry elements 
of f ( r )  constitutes a subgroup H of 13, called the sym- 
metry group off(r). Any subgroup of H is called an 
invarianee group off(r). 

If H is the symmetry group off(r)  then the conjugate 
subgroup G H G -t is the symmetry group of Gf(r), for 

( G H G -1) Gf(r) = G Hf(r) = Gf(r).  

Given an atom arrangement 13r~, one can construct all 
those functions defined on it which have a given sym- 
metry group H _  G as follows" 

Decompose 13 into right-cosets of H" 

13 = H + H G2 + . . .  H Gh, (3.2) 

(if 13 is infinite h' need not be finite); 
correspondingly decompose 13rl (see L2) into h"_<h' 
disjoint sets of atoms: 

Gr l=  Hr l+  HG2rI+ . . .  + HGh,,rl. (3.3) 

Choose h" arbitrary numbers a~, a2 . . .  an,,, and define 
the function f ( r )  by putting, for all elements of H 
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f ( r ) = a ~ ,  if r=Hr ,  
where r~ = G, rl (e = 1,2, . .. h") . 

The function f(r )  then clearly has bl as an invariance 
group whatever the choice of al, a2.. .  a h " .  

By choosing each possible set of h" numbers al, 
a2 • . .  a h "  in turn, we thus obtain, in the way just des- 
cribed, all those possible functions on Grl whose sym- 
metry group is either bl or contains bl as a proper sub- 
group. The latter may occur if a~=ap for some e ¢ f l  
(for example, in the extreme case where all h" numbers 
a~ are equal the symmetry group of f ( r )  will be G 
itself). But this only means that when constructing in 
this way the functions f ( r )  for each subgroup I-I of G 
in turn, we obtain some functions more than once. 
When classifying all the functions defined on Grl, ac- 
cording to their symmetry groups this redundancy can 
easily be removed. 

A full classification label of f ( r )  is then 

[G, bl ; rl, rz, . . .  rh,,; al, a2 . . .  ah,,], (3.4) 

and f ( r )  can completely be determined from it. 
By letting, in the classification label (3.4), H vary 

over the set of all subgroups of G, and (al, a2 . . .  a h , , }  

over the set of all h"-plets of numbers with no regard 
to their order (this means that, for example, (2,3,5}= 
{3,2,5)), we obtain a list of all functions on Grl. 

This classification of all scalar functions defined on 
simple atom arrangements will be referred to as classi- 

.fication C1 or, simply C1. 
The generalization of C 1 to the case of composite 

atom arrangements (that is, whose atoms occupy more 
than one set of equivalent positions) is straightforward 
and we shall not discuss it here. 

Vector functions 
After having discussed the principles of a classifi- 

cation of all scalar functions on atom arrangements by 
means of symmetry groups, we should next consider 
the problem of an analogous classification of all (real 
or complex) vector functions on atom arrangements. 
(Here 'vector' when used in the phrase 'vector func- 
tion' will always mean a vector in a three-dimensional 
Euclidean vector space. On the other hand, we shall 
also speak of vectors in carrier spaces of representa- 
tions of groups; in particular, the term 'invariant vec- 
tor'  is used in this latter sense). 

Applying an element G=(RIv) of a group G of iso- 
metrics to a vector function B(r) defined on Grl means 
replacing B(r) by the function [G] B(r) defined as usual 
by 

[G]B(r) = ~R RB(G-lr) (3.5) 

where ~R = det R = + 1 if B(r) are axial vectors, and 
~R=I  if B(r) are polar vectors; more explicitly, in 
terms of components B<O(r) of B(r). 

3 

[G]B~O(r)= ~, 6RR~B~J)(G-lr). (3.5A) 
j = l  

Such a vector function is called invariant under G 
if [G]B(r)= B(r). The definitions of symmetry elements, 
invariance groups and symmetry groups are then intro- 
duced in the same way as in the case of scalar functions. 

The next step would be the construction of all pos- 
sible vector functions with a given symmetry group 
H _  G on a given simple atom arrangement Gra, and 
finally their classification C1. However, we are pri- 
marily interested in the case of spin arrangements. To 
discuss these we shall make use (in § 4) of magnetic 
groups and arrive at a classification (to be called C 1') 
appropriate for this case. The general case of arbitrary 
vector functions could then easily be obtained by an 
obvious modification of the argument given there for 
spin arrangements; therefore we do not treat it ex- 
plicitly. 

4. Classification CI' 

One can generalize the concept of the symmetry group 
of a function defined on an atom arrangement by taking 
into account the permutations of its distinct values. 
One defines for this purpose the colour groups (the 
distinct values of a function are often called colours 
in this context) in such a way that a symmetry group 
generalized in this sense is always some colour group. 
A mathematically most satisfactory but very concise 
discussion of this question was given by Van der Waer- 
den & Burckhardt (1961), where references to earlier 
work can be found. 

For our purpose it is more appropriate, however, to 
make use of another generalization of the concept 
'symmetry group of a function'. We are here not parti- 
cularly interested in a classification by symmetry groups 
of arbitrary scalar or vector functions defined on atom 
arrangements. We are only interested in such a classi- 
fication of spin arrangements, that is, axial-vector func- 
tions which have the additional property of changing 
sign under time inversion, while atom arrangements 
on which they are defined are invariant under this 
operation. Elements of symmetry groups generalized 
for this purpose will thus be pairs (G,A), where G is an 
element of a discrete group of isometrics G, and A is an 
element of a group A which consists of the identity E 
and time inversion E ' ;  the generalized symmetry 
groups themselves will be certain subgroups of the 
direct product G x A. 

Every scalar function f ( r )  is either a time-inversion 
even function, E'f(r)=f(r) ,  or a time-inversion odd 
function, E ~ ( r ) =  - f ( r ) ,  or a linear combination of an 
even and an odd function. We shall simply say E ' -  
even and E'-odd, and we shall use the same definitions 
and terminology in the case of vector functions. Thus 
spin arrangements are E ' -odd vector functions defined 
on atom arrangements; the atom arrangements them- 
selves are E'-even functions on the Euclidean space. 

While spin arrangements, that is, arrangements of 
magnetic dipoles, are E ' -odd axial vector functions, 
similar arrangements of electric dipoles are E'-even 
polar vector functions. 
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We begin with a few well-known definitions, which 
we repeat here to explain our notation and possibly 
avoid misunderstandings. 

Applying an element (G,A) to a scalar function f(r )  
defined on an atom arrangement Grs means replacing 
it by the function (G,A)f(r), where 

(G,A) f(r)=eaGf(r) 
=eAf(G-Ir) if f ( r )  is E ' -odd (4.1) 

(G,A) f ( r )  = a f ( r )  
=.f(G-lr) if f ( r )  is E'-even, (4.2) 

and eA = + 1 or -- 1 according as A = E or A = E ' ;  ea 
is called the signature of the element (G,A). 

Similarly, if G =  (Rlv), applying (G,A) to a spin ar- 
rangement (or any other E ' -odd axial vector function) 
S(r) defined on Grx means replacing it by the spin 
arrangement [G,A]S(r), where 

[ G,A ]S(r) = e A[ G]S(r) (4.3) 

and [this is definition (3.5A)] 

3 

[G]S(O(r)= ~ JRR~jS(J)(G-Sr), i=1,2,3. (4.4) 
j = l  

In the case of an E'-even axial vector function P(r) it 
means replacing it by 

[G, AIP(r) = [GIP (r) .  (4.5) 

In the case of polar vector functions (E'-odd or E ' -  
even) definitions (4.3) and (4.4) remain unchanged 
except for replacing J~ by unity. 

These definitions are of course compatible with our 
assumption that, for any atom position r of an atom 
arrangement, one has [G,A]r = Gr. 

The definitions (4.1) to (4-4) make it possible to 
attach in the present case of E ' -odd functions a mean- 
ing to such phrases as 'invariance' or 'symmetry 
element of a spin arrangement' etc., analogous to their 
meaning as defined in § 3. 

Since we consider only single valued functions, no 
scalar or vector E ' -odd function can remain unchanged 
when the element (E,E') of G x A is applied to it. 
Therefore invariance groups of such functions, and 
in particular of spin arrangements, cannot contain this 
element. In other words, each such invariance group 
is necessarily a magnetic group. For magnetic groups 
can be defined as precisely those subgroups of G x A 
((3 is here any discrete group of isometries) which do 
not contain the element (E,E').* According to this def- 
inition, all groups of isometrics, and hence, in partic- 
ular, all space groups and their subgroups are magnetic 
groups; they are called trivial magnetic groups. 

To avoid a possible misunderstanding we should per- 
haps mention that usually one restricts the term 'mag- 

* If A is interpreted as the symmetric group on two variables, 
and E' as a permutation of two 'colours' rather than time 
inversion, then this definition becomes the definition of a 
two-colour group, also called a black-and-white group. 

netic group' to the case, most important in practice, 
when G is a space group F or any subgroup of a 
space group (in particular, any crystallographic point 
group). 

All essential properties of magnetic groups have been 
derived, starting out from the above definition, by 
Opechowski & Guccione (1965). We assume here these 
properties as known, and we shall use the terminology, 
conventions and notation introduced in that reference 
unless otherwise stated. (One exception is that both, 
(G,A) and [G,A], are simply denoted there by GA). 
However, we will repeat one such convention expli- 
citly: we shall call an element (G,A) a primed element 
if A = E' ,  and an unprimed element if A = E; correspon- 
dingly we shall often use a simplified notation: G' for 
(G,E') and G for (G,E). 

The prescriptions for constructing all scalar func- 
tions f ( r )  and all spin arrangements S(r) defined on a 
given atom arrangement Grl and having a non-trivial 
magnetic group m c G x A as an invariance group are 
analogous to the prescriptions formulated for scalar 
functions in § 3; analogous but somewhat more com- 
plicated. 

A non-trivial magnetic group m is always of the 
form 

m = H + HL 2 , (4.6) 

where 

L = H + H L2 (4"7) 

is some discrete group of isometries and L2 is an ele- 
ment of / not in H. Whenever necessary, we shall 
denote m more explicitly by mL(H). In particular, if 
L is a three-dimensional space group, the symbol m 
would be replaced by M and the group M called a mag- 
netic space group or Shubnikov group. However, we 
want to emphasize that the prescriptions we are about 
to formulate are perfectly general, and presuppose 
nothing about the non-trivial magnetic group m. 

We decompose G into right-cosets of L, 

G = k +  LG2+ . . .  + LGz,, (4-8) 

and correspondingly (see L2) 

Grl = krl + kGzrl + . . .  + LG~ ,,rl , l" <_ l ' .  (4-9) 

We next define the magnetic site group re(G) of r , =  
G~ra as the magnetic group consisting of all those ele- 
ments m(G ) of m for which m(G)G=G: 

[ H(G) + H(G)L~ if there exists L~ in m 

re(r,) = such that L3r~ = r ,  (4.10) 

H(G) otherwise; ~=1,2,  . . .  l " .  

Whenever necessary we shall denote the elements of m 
more explicitly by (L,A), where L =  (Plu), and the ele- 
ments of re(r,) by ((C, Iw,), A,). 

We deal with the case of scalar E ' -odd functions 
and with that of spin arrangements separately. 
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Scalar E'-odd functions 
As we have seen in § 3, it is always possible to con- 

struct, for a given subgroup H of G, a scalar function 
defined on an arbitrary atom arrangement Grl and 
invariant under H. This is no longer true when H is re- 
placed by a non-trivial magnetic subgroup m of G × A. 

A necessary and sufficient condition for the existence 
of an E'-odd scalar function f ( r ) ~ 0  defined on Grl 
and invariant under m is that re(r1) be a trivial mag- 
netic group. 

The condition is necessary because from mf(r)=f(r)  
it follows thatf(mr)=emf(r) ,  where em is the signature 
of m, and hence, by putting r = r l ,  one obta insf ( r l )=  
em(,of(rl) ; hence em(,a)= 1. 

If m(rx) is a triwal magnetic group, then the func- 
t ionf(r)  defined by putting 

f(r) = ema,, for r = mr. = L r . ,  (4" 11) 

where a~, a2, . . .  at,, are arbitrary numbers, is single- 
valued (because m(rl) is a trivial magnetic group) and 
invariant under m; hence the condition is also suf- 
ficient. 

Equation (4.11) thus constitutes a prescription for 
constructing all those E'-odd scalar functions which 
have m as an invariance group. If m(r~) are not all 
trivial, such functions on Grx do not exist. 

Proceeding further as in § 3 we arrive at a classifi- 
cation label of an E'-odd functionf(r) whose symmetry 
group is me(H): 

[G; me(H); rl, r2, . . .  rl,,; a:, a 2 ,  . . .  at"] • (4.12) 

We shall refer to the classification of E'-odd functions 
which makes use of such labels as classification C 1' 
or simply C 1'. 

If we had disregarded the existence of magnetic 
groups, we would have missed half of the symmetry 
elements of an E'-odd function, and its C 1-1abel would 
be almost twice as complicated because the number of 
positions r, at which one would have to specify the 
values of the function, would be 2 l " = h " :  

[G; H; rx, r':, rz, r z . . . ,  rw, r~,,; 
a l ,  - -  a l ,  a 2 ,  - -  a 2 ,  . . .  a l " ,  - -  a t " ] .  (4" 13) 

In this way the link between C 1 and C 1' for scalar 
functions is established. 

We see that a necessary (but not sufficient) condition 
for an E'-odd function f(r)  to have a non-trivial mag- 
netic symmetry group is that a number and its negative 
must occur the same number of times as values off(r). 

Spin arrangements 
The treatment of this case given by Opechowski & 

Guccione (1965) is in some respects unnecessarily com- 
plicated; moreover, for brevity, some of the essential 
proofs had to be omitted there. That is why we present 
it here again, in a simpler way; but, of course, we shall 
not repeat the discussion of the specific questions con- 
nected with the important case of magnetic space 
groups (that is, G = F). 

We formulate a convenient necessary and sufficient 
condition for the existence of a spin arrangement S(r) 
defined on Gr: and invariant under m: such a spin 
arrangement exists if, and only if, for each r, = G~r I the 
equations 

[m(r,)]S(r~)=S(r,) (e= 1,2, . . .  l") (4.14) 

or, more explicitly, 
3 

(~..(.~ac~c.,~-~.)sO?(r~)=o (i= 1,2,3), (4.14a) 
j = l  

have at least one set of (non-vanishing)solutions 
SO)(r,) satisfying (4.14A) for all elements of m(r~,). 

Any E'-odd axial vector a,  whose components sat- 
isfy these equations is called a spin vector admissible 
at r~. In other words, a spin vector admissible at r,  is 
the simultaneous eigenvector of all the matrices of 
re(r,) belonging to the eigenvalue + 1. 

We show that the condition is necessary. In fact, 
from 

[m]S(r)=S(r),  m=(L ,A) ,  L = ( P I u ) ,  

and [see (4.3) and f4.4)] 
3 

[m]S°)(r)=em ~ 6ee~jsu)(L-:r) , i=1 ,2 ,3 ,  (4.15) 
j = l  

it immediately follows that, if r = LG~r~ = Lr,  then 

which is another way of writing (4.14A). 
To show that the condition is sufficient, we make 

use of it to construct a spin arrangement S(r) invariant 
under m. Let or, be an admisible spin vector at r~, 
c~=l, 2 , . . .  l " ;  we assume here that the magnitudes 
of these l"  admissible spin vectors are all equal (see, 
however, the final paragraph of this section). Then the 
spin arrangement in which the spin vector S(r) at 

r=mr~=Lr~ 

is given by 
3 

S°)(r)=em ~ 6vetp~ ?, i=  1,2,3, (4"16) 
j---1 

is single-valued and invariant under m. (More specifi- 
cally, each of the l"  'sub'-spin arrangements (4.16) on 
the l"  interlocking atom arrangements l.G~r~, see equa- 
tion (4.9), which constitute the atom arrangement Gra, 
is invariant under m). Perhaps it is useful to emphasize 
that in a spin arrangement constructed according to 
the prescription (4.16) the spin vectors at ra, rz . . .  rz,, 
are just the selected admissible vectors: S(r~)--- or,, 
0~ = 1 , 2 ,  . . .  l "  . 

We first show that the spin arrangement (4.16) is 
single-valued; that is, we show that for any two ele- 
ments m and n3 of m the equality mr~ = r~r~ implies that 
the right-hand side of equation (4.16) has the same 
value. The same equality also implies that m-~rh be- 
longs to re(r,,). Hence rfi = m m(r,,). The right-hand side 
of (4.16) for m m(r~,) is: 
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8mm(r~) ~ ¢~PCo~(gce)li(7(~ 1) 
J 

=f'm ~_, 61"Pik(emOr~) ~,  Oc~CekitT~)) " 
k Y 

Using (4.14A) this becomes equal to the right-hand 
side of (4.16) for m. 

We next show that the spin arrangement (4.16) is in- 
variant under any n5 belonging to m. From (4.16) it 
follows that 

S co(/_,- lr) = SCO(/,- I Lr~) 

k l 

By substituting this expression in (4.15) where we first 
replace m by i~ one obtains immediately 

[ffqSt')(r)=S<O(r), i=  1,2,3. Q.E.D. 

Prescription (4.16) for constructing spin arrange- 
ments on Grx presupposes the existence of admissible 
spin vectors try, ~= 1,2, . . .  l".  Admissible spin vec- 
tors always exist if the atoms of a simple atom ar- 
rangement occupy general positions (that is, if r~ is a 
general position) because then every spin vector is ad- 
missible at any position. If the atoms occupy special 
positions admissible spin vectors may not exist, and 
hence, no spin arrangements will exist in such a case. 
The number n,,(0 < n,~ < 3) of linearly independent ad- 
missible vectors tr~ is given by 

1 
n~= ~ mtr~ ~ ~m(r=)6C= trace C~, (4.17) 

where s~ is the order of m(r~). 
Since the condition (4.14A) is also necessary, 

all possible spin arrangements will be obtained from 
(4.16), by taking in turn each simple atom arrange- 
ment Grl, and, given Grl, each magnetic group mL(H) 
for which k is a subgroup of G, and each set {al = S(rx), 
az=S(rz), . . .  az,,=S(r~,,)} of admissible vectors. In 
general one will obtain in this way each spin arrange- 
ment more than once, but this redundancy is easily 
removed. 

The classification label 

[G; mL(H); S(rl), S(rz), . . .  S(rl,,)] (4.18) 

of a spin arrangement S(r) determines it uniquely if 
mL(H) is its symmetry group (rather than one of its 
invariance groups). We shall refer to the classification 
of spin arrangements which makes use of such labels 
as classification C 1' or simply C 1'. 

In some cases it may not be necessary to specify all the 
l"  spin vectors occurring in the C I' label of a spin 
arrangement. It may be sufficient to specify a smaller 
number of them together with some algebraic rela- 
tions. This point has already been discussed by Ope- 
chowski & Guccione (1965), § IV, 2, h and § IV, 3. As 
explained there in detail, it is sufficient, for example, 
in the case of a simple helical spin arrangement to 
specify one single spin vector together with a group 
which generates the countable infinity of all other spin 

vectors from that one; thus, in the C 1' label, one would 
indicate one spin vector at rl (say) and the group which 
generates the others - see also example 4 in § 6 below. 
Such groups, that is, groups whose elements operate 
in the spin vector space only, are closely related to 
'spin space groups' introduced by Brinkman & Elliott 
(1966) and to groups considered by Kitz (1965). We 
shall not discuss this question here. 

So far we have considered only simple atom arrange- 
ments. The generalization of C 1' to the case of com- 
posite atom arrangements (that is, atom arrangements 
whose atoms, no longer necessarily identical, occupy 
more than one set of equivalent positions, or whose 
otherwise identical atoms have spins of different mag- 
nitudes) is straightforward: spin arrangements on each 
of the several component atom arrangements are as- 
signed their own C 1' label. Since magnetic groups oc- 
curring in the several C 1' labels may be different, several 
magnetic groups will, in general, be assigned to such 
a composite atom arrangement. There is nothing sur- 
prising or objectionable in such a situation. Charac- 
terizing the spin arrangement defined on a composite 
atom arrangement by means of the intersection of the 
several magnetic groups would not be useful; just as 
it would not be useful to say that a plane geometrical 
figure consisting of a triangle and a square which have 
a common centre has no symmetry at all. 

5. Classification C2 

In § 3 we have described the principles of a classifi- 
cation, C 1, of all functions f(r)  defined on atom ar- 
rangements by means of the symmetry groups of such 
functions. However, in the case of E'-odd functions, 
C 1 has the disadvantage of not taking into account 
the additional symmetry elements (the 'primed sym- 
metry elements') which E'-odd functions may possess. 
Classification C 1' (described in § 4) of all E'-odd func- 
tions and all spin arrangements (which are E '-odd 
axial vector functions) by means of magnetic groups is 
free from this disadvantage. 

In this section, we shall consider scalar functions and 
spin arrangements again disregarding the fact that the 
latter are E'-odd, and the former may be E'-odd, and 
show that: 
(A) to each spin arrangement (or scalar function) with 

symmetry group H, according to C 1, a represen- 
tation F o f G  can be assigned in a well-defined way; 

(B) if a given finite-dimensional representation F of 
G satisfies certain conditions then a set of spin ar- 
rangements (or scalar functions) transforming 
according to F can be constructed, which makes 
it possible to establish still another classification, 
to be called C2, of spin arrangements. 

(A) We first discuss scalar functions. 
Let us arrange the values of the g functions defined 

on Grl (g is the order of G), 

f(r) ,  G2f(r), . . . ,  Ggf(r) (5.1) 
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into a rectangular array whose rows are labelled by the 
elements of G, and columns by the positions of the 
atoms of Grl: 

f(rx), f(r2) . . . . f ( r , ) ,  
Gzf(rl), Gzf(rz) . . .  G2f(rn), 
Ggf(r~), Ggf(r2). . .  Ggf(r,). (5.2) 

The array may be infinite because g and n may be in- 
finite; this is the case when G is a space group and 
Grl a crystal. We list some of the properties of the 
array: 

The numbers in each row are permutations of the 
numbers constituting the first row, that is, a value aj 
o f f ( r )  occurs the same number, nj, of times in each 
row (if f(re)-Cf(rt) for any two k and l, k ¢  l, then 
nj.= 1 for all j). 

Each value off( r )  occurs snj times in each column, 
where s=g/n is the order of the site group G(r0. This 
is so because the site groups of rl, r2 . . .  rn are all 
conjugate subgroups of G, and for this reason a posi- 
tion re is mapped into each position rz by exactly s 
different elements of G. 

If H (order h; index h' in G) is the symmetry group 
off(r)  then the above array consists of h' different sets 
of h identical rows each. In other words, only h' of the 
g functions represented by the array are distinct. More 
specifically, two functions G , f and  G~fare equal if and 
only if Ga and G0 belong to the same left-coset of H 
in G. We take these h' distinct functions to be 

.fu(r)=G;~f(r), f~(r)=f(r) ,  Iz= 1,2, . . .  h ' ,  (5.3) 

where G u are the coset representatives in the decom- 
position 

G =  H +G~-~H + . . .  + G~;aH 
= H + H G 2  + . . . + H G  h,. (5.4) 

The functions fu satisfy, for all elements of G, the 
relations 

h' 

Gfu(r)= ~ fv(r)eH(G), u , (5.5) 
/a=l 

where PH(G) are the matrices of the permutation re- 
presentation PH of G, generated by the right-cosets of 
H in G (see L3 in § 2). 

If the index h' of H in G is infinite, the matrices 
PH(G) are countably infinite, but they are well-defined 
and so is the representation PH itself. However, in 
what follows we assume h' to be finite because cer- 
tain parts of our argument would, in general, not be 
correct if h' were infinite. We briefly discuss this dif- 
ficulty later on in this section. 

The h' functions fu constitute a basis in the carrier 
space of PH if they are linearly independent. If only 
d< h' among them are linearly independent, one can 
always find (see, for example, Van der Waerden (1932), 
page 74, Hilfssatz 1) d orthogonal linear combinations 
of them, ~0~ (r), ~ = 1,2 . . .  d, such that for all elements 
of G 

d 

G~o~(r)= ~ (pp(r)/'H(G)p~, (5"6) 
//=1 

where/'H is a unitary representation of G and 

PH=/-'H @ AH, (5"7) 

where A H is another unitary representation of G. One 
can of course always choose the linear combinations 
such that ~01(r) =3q(r) =f(r) ,  without loss of generality. 
The representation/'H may be reducible or irreducible. 

We have thus shown that, to each function f(r)  
defined on Grl and having the symmetry group H with 
a finite index h' in G, one can assign a finite-dimensional 
unitary representation/-'H of G, which is uniquely de- 
termined apart from an equivalence transformation; 
and that one can choose a basis ~01, ¢P2, . . .  in the 
carrier space of/-'H such that f ( r ) =  ~1(r). A represen- 
tation/ 'H which has the latter property will be called a 
representation of G associated with fir). 

The procedure for associating a representation /-H 
of G with a given vector function B(r) defined on Grj 
and having H as the symmetry group is, apart from 
obvious trivial modifications, exactly the same as in 
the case of scalar functions, so that it is sufficient to 
indicate those modifications. We shall explicitly con- 
sider the case of spin arrangements, but we shall treat 
them just as any other axial vector functions, that is, 
we shall ignore the fact that they are E'-odd axial vec- 
tor functions. 

If we arrange the spin vectors S(rm), m =  1,2 . . .  n, 
of the g spin arrangements 

S(r), [Gz] S(r), . . .  [Gg]S(r) (5.1s) 

into an array similar to (5.2), then it is no longer true 
that the spin vectors, 

[Ge]S(rx), [GelS(r2), . . .  [Ge]S(rn), k =  1 ,2 , . . .g  

of a row of the array are permutations of the spin 
vectors of the first row (k=  1, G I = E ) ;  they are per- 
mutations of the spin vectors 

6nkReS(rl), JnkRkS(r2), . . .  JRkReS(rn) 

[compare definition (4.4)]. 
Once the symmetry group H of S(r) has been deter- 

mined, the argument leading in the case of scalar func- 
tions to equations (5.3), (5.5) and (5.6) can be repeated 
without any change, except the change in notation. 
One thus obtains: 

Su(r)=[Gul]S(r), Sl(r)=S(r),  /z= 1,2, . . . ,  h'; (5.3s) 
h' 

[G]Su(r)= ~ Sv(r)PH(G)vu; (5.5s) 
/z=l 

and 
d 

[G]A,,(r)= ~ Ap(r)/-'H(G)~, c~= 1,2 . . .  d<h' ,  (5.6s) 
B=I 

the definition of PH and equation (5.7) remaining un- 
changed; the spin arrangements A~(r) form a basis in 
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the carrier space of FH and are orthogonal linear com- 
binations of the spin arrangements Su(r); moreover, 
Sx(r) = S(r) = A:(r). 

The finite dimensional representation FH of G, uni- 
quely determined in this way apart from an equivalence 
transformation, will be called a representation of G 
associated with the spin arrangement S(r) defined in Gr: 
(N.B. Only those equivalence transformations are al- 
lowed under which the condition Ax(r)=S(r) is pre- 
served). 

As has already been mentioned, it is essential for the 
validity of the above argument that the index h' of H 
in G be finite. If h' is infinite, then PH is an infinite-di- 
mensional permutation representation of G, and its 
decomposition into a direct sum (5.7) cannot be estab- 
lished in the way indicated for finite h'. We have not 
further examined this problem; its treatment wotdd 
require an approach based on the theory of infinite- 
dimensional representations of groups, as developed by 
Mackey and others [see, for example, Coleman (1968)]. 

If  the symmetry group H of a spin arrangement de- 
fined on a crystal is a three-dimensional space group 
(which means, that its magnetic symmetry group is a 
trivial or non-trivial three-dimensional magnetic space 
group), then h' is necessarily finite. In other words, every 
spin arrangement that is invariant under some three- 
dimensional discrete group of translations (which, in 
general, will be a proper subgroup of the translation 
group of the crystal) has a representation FH associated 
with it. 

If, however, the symmetry group H of a spin arran- 
gement defined on a crystal is, for example, a two- 
dimensional space group, as is often the case with the 
helical spin arrangements, then FH cannot be defined 
in the above described manner (if at all!); one can assign 
to such a spin arrangement only the infinite-dimension- 
al permutation representation PH. 

To avoid such difficulties one can, of course, intro- 
duce cyclic boundary conditions on the crystal (thus 
making the group 13 finite); or, on the spin arrange- 
ments only (thus enforcing invariance of spin arrange- 
ments under some three-dimensional discrete groups of 
translations). 

(B) Let an arbitrary (reducible or irreducible) re- 
presentation F (dimension d) of 13, and an atom arran- 
gement Grx be given. We may assume without any loss 
of generality that F is  unitary. For if a set of spin arran- 
gements (or scalar functions) defined on Grl and trans- 
forming according to F is to exist at all, the represen- 
tation F must be equivalent to one of the representation 
FH defined in (5.7) and those could always be taken to 
be unitary. 

To avoid awkward repetitions we shall discuss here, 
contrary to what we have done in (A), spin arrange- 
ments first, and obtain the conclusions concerning 
scalar functions as a byproduct. 

Since we shall no longer consider explicitly the spin 
arrangements Su(r ), introduced in (A), which transform 
according to the permutation representation PH, but 

only those transforming according to some given re- 
presentation F (which may be equal to PH, but this is 
here irrelevant), we may denote the latter by S,(r), 
c~ = 1,2 . . .  d, rather than by A,(r), without introducing 
confusion. If the spin arrangements S,(r) (defined on 
Gr~, and transforming according to F) exist at all, then 
(5.6s) can be written as 

d 

[GlS(~°(r)= ~ S(~)(r)F(G)#,, i=1,2,3, (5.8) 
B=l 

where the left-hand side of this equation is defined by 
(4.4), assuming that G=(RIv). By multiplying both 
sides of (5.8) by 6R(R-1)~i and summing over i, the left- 
hand side of (5.8) becomes 

~, (R-:)mR,,S~I)(G-lr)= S~k)(G-lr)= GS~k)(r) (5-9) 
t 1 

[where the last equality follows from definition (3.1)], 
while the right-hand side of (5.8) becomes 

i 1~ 

= ~, ~, S~'(r)6~R,kP(G)p~. (5.10) 
t # 

Equating (5.9) and (5.10) one obtains 

GS~k)(r) = ~ ~ 5}°(r)D(G),#;k~, (5.11) 

where D(G)~#;k~ are the elements of the direct product 
matrix 

D(G)=6RR @ F(G). (5-12) 

We have thus shown that if the d vector functions 
S,(r), c~= 1,2, . . .  d, form a basis of the d-dimensional 
representation F of G, then the 3d functions S(~°(r), 
i=  1,2,3, transform according to the 3d-dimensional 
unitary representation D of G, whose matrices are 
given by (5.12). 

In the case of scalar functions (p,(r), equations (5.8) 
do not differ from equations (5.11) because matrix R 
in this case becomes a number, namely unity, and, 
hence, D = F; thus 

d 

Gc0=(r)= ~ ~0~(r)r(c)B,. (5.13) 
#=1 

We now formulate a theorem that one may use for 
constructing all possible sets of spin arrangements (if 
any!) which transform according to a given represen- 
tation F of G: 

A set of spin arrangements S~(r), a =  1,2, . . .  d, de- 
fined on Gr: and transforming according to (5.8), 

d 

[G]S~(r)= ~ S#(r)F(G)#,, (5.8A) 
#=1 

for all elements G of G, exists if and only if the restric- 
tion of the representation D [defined by (5.12)] to the 
site group G(rl) contains the identity representation at 
least once. 

The condition is necessary. We replace in (5.11), 
which, as has just been shown, follows from (5-8), G 
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by G -1 and make use of the unitarity of D; we obtain: 

S(~k)(Gr) = ~ ~ S}°(r)D(G)*k=.,# • 
i 

We put in this equation r = r l  and specialize it further 
by choosing for G any element G(rl)=(CIw) of G(r0; 
then 

S(k)( r l )  * -  E E D[G(rl)]k=;i#S(# O ( r l ) * '  (5.14) 
i # 

where 
D[ G(r 1 )]ka;ifl ~- t~C Ckt F [  G(F 1)]ctfl. 

Equation 1,5.14) means, according to (L4), that the 
linear combination 

J ( r ) =  ~ ~ S~k)(rl)*S<f)(r) (5.15) 
k 

of the vectors S~k)(r) of the carrier space of D is inva- 
riant under G(r0; or, in other words, that the restric- 
tion of D to G(rl) contains the identity representation 
at least once. 

The condition is sufficient. Since the restriction of 
D to G(rl) contains the identity representation, there 
exists, according to (L4), a set of 3d numbers a~ k) 
which satisfy the relations (5.14), 

a~k)*= ~ ~ D[G(rl)]k=:,fl} o* (5.16) 
i # 

for all elements of G(r0. We make use of these num- 
bers and construct d spin arrangements S~(r), a =  
1,2, . . .  d, on Grl by assigning to the atom at r = Grl 
in the spin arrangement S~(r) the spin vector 

S~k)(r)= ~ ~ D(G)*k~,;~a~ ° , k=  1,2,3. (5.17) 
i # 

We next show (a) that the d spin arrangements con- 
structed in this way are single-valued vector functions 
on Grb and (b) that they indeed transform according 
to (5.8A). (We omit the proof that they cannot all 
vanish identically; it consists in showing that this 
would imply a(~ k) - -  0 for each k and a.) 

The proof of (a) and (b) is a generalization of the 
proof that the spin arrangement defined by (4.16) is 
single-valued and invariant under m. 

To prove (a) we show that, for any two elements G and 
(7 of G for which Gr~= (7rl, the right-hand side of 
equation (5.17) has the same value: 

Z Z D((7)~:;,#°'~ )-- ~ Z D(G)~,,,;,#°} ')" (5.18) 
i fl i ,8 

Since G-1(7 belongs to G(rl), we may put (7= GG(rl). 
By substituting this in the left-hand side of (5.18) and 
using (5.16) we obtain: 

i fl i fl j 
× D[G(rO]~;ifl~ '= ~, E D(G)~;Jra<rJ); 

7 

and this is, in fact, the right-hand side of (5.18). 

To prove (b) we apply an element G=  (/~[~) of G to 
the spin arrangement (5.17) and we obtain (5.8A), tak- 
ing into account (4.4), (5.17) and (5.12), as follows: 

[G]S~k)(r) = ~ 6~/~k, ~ ~ D(G--1G)j~;ifl~ ~ ,  ( , )  

j i # 

= E E E 6~Rk'aT~(R-')'IF(&')gS~O(r) 
j l 

= E (k) r / ~  - Sr ( )  (G)r,,, k = 1 , 2 , 3 .  
? 

This completes the proof of the sufficiency of the con- 
dition stated in the theorem. 

The same theorem and the same proof hold for the 
case of scalar functions, provided (5.8A), D, R and % 
are replaced by (5.13), F, unity and a~ respectively. 
This is also true of all statements in the remainder of 
this section. 

If F is irreducible the d spin arrangements (5.17) are 
linearly independent. If, however, F is reducible they 
need not be. We continue the discussion of this point 
at the end of this section. 

We next proceed to assign to each S(r) a classification 
label which specifies the representation F of G associa- 
ted with S(r). The full classification label is" 

[G,rl; F(KO, F(K2) ... F(Ka); o"1, 0" 2 . . . .  ad.]. (5-19) 

Here F(K1), . . . ,  F(Kq) are the matrices which corres- 
pond to the generating elements Ka, . . . ,  Kq of G (in 
the case of space groups, q _< 6). The d vectors a= (com- 
ponents a~ D, a~ 2), a<~ 3)) satisfy (5.16), and, as is clear 
from (5.17), are equal to the vectors S=(rl) located at 
rl in the d spin arrangements S~(r). 

We shall refer to this classification as classification 
C2 or simply C2. A C2 classification label determines 
S(r) uniquely. 

For scalar functions the C2 classification label 
would be: 

[G,rl; F(K1), F(K2), . . .  F(Kq); al, az, . . .  aa]. (5-20) 

By definition of Fz-z a C2 classification label is at- 
tached to the spin arrangement Sl(r) rather than to any 
of the other d-1 spin arrangements given by (5.17). This 
implies a good deal of redundant information in such 
a label. However, this cannot be avoided if one wishes 
to use representations as a classification criterion. 

If for a given Grl the restriction of a representation 
F of G to G(rl) does not contain the identity represen- 
tation, the corresponding C2 classification label does 
not exist (that is, there are no d non-vanishing spin 
arrangements transforming according to F). 

By letting F vary over all those finite-dimensional 
irreducible and reducible representations of G whose 
restrictions to G(rl) contain the identical representa- 
tion, and letting the set { a l , . . . ,  aa} vary over all 
solutions of (5" 16) for a given F, we obtain a list of all 
spin arrangements on Grl describable by finite-dimen- 
sional representations in the sense of C2. We should 

A C 27A - 6 
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emphasize that by ' a l l . . .  representations' we really 
mean all, and not just one from each set of equivalent 
representations. 

The list we obtain in this way will contain many spin 
arrangements more than once. We shall discuss here 
only one of the reasons for this redundancy. If, for a given 
label, the spin arrangements (5.17) are not linearly 
independent, then there exists, in analogy to an argu- 
ment given earlier in this section [see (5-6) and (5-7)] 
another set of d< d spin arrangements S (r) transform- 
ing according to a representation/~contained in F and 
with Sl(r)=Sl(r). Therefore we may drop that parti- 
cular label from the list. 

Furthermore, we may drop from the list all those 
labels in which _? is replaced by a representation equiv- 
alent to it and having as its 'first' basis vector Sl(r). 

We illustrate this point with an example• For simp- 
licity we consider the case of scalar functions defined 
on a 'square' molecule• Its two-dimensional symmetry 
group G is 4mm (order 8). We choose rl ~ 0 on the mz 
reflexion line; then G(rl) is the group mx (order 2). We 
want to construct four scalar functions which trans- 
form according to the unitary representation F of 4mm 
given by the matrices 

• ° !) 
We easily find that F restricted to G(r~) contains the 
identical representation twice, and that 

a l  = 1, a 2 = 0 ,  a 3 = 0 ,  a4  -= 1 

are the components of one of the invariant vectors. 
Prescription (5.17) becomes in the case of scalar func- 
tions 

~(r )=  y r(6)Sa ~ . (5.21) 
# 

Using it, we obtain 4 functions whose values at the 
atoms of the molecule are: 

0 1  11  1 0  0 0  

~01 : ~02 : ~03 : ~04 "_ 

0 1  0 0  1 0  1 1. 

These 4 functions are not linearly independent: 

~01 - -  ~02 + ~03 - -  (/94 = 0 . 

The functions ~1, q~2 and q~3 do constitute a basis of the 
reducible representation F given by: 

F(4~)=(ii-ll),  F(m~)=(-li  • 

The representation F which occurs in the C2 label of 
(ox is a unitary representation equivalent to F and having 
q~l as its 'first' basis vector, while the C2 label in 

which f '  occurs in a completely reduced form is no 
longer a label of rpl but of ~1-Ji-~03, as is easily verified. 

Finally, we would like to mention that in order to 
assign a representation to a given spin arrangement 
one could use instead of the method described in part 
A of this section, the well-known method of projec- 
tion operators, which however turns out to be much 
more laborious in practice. 

6. Relation between classifications C1' and C2 

In this section we discuss the relation between the 
classification C 1' (and C 1) and C2. We first formulate 
and prove a theorem, which we shall refer to as the 
C2-C 1' linking theorem. 

Let a set of spin arrangements S~(r) defined on an 
atom arrangement Grl constitute the basis of a repre- 
sentation F of (3 : 

d 
EG]S~= ~ S,F(G)p~ (c~= 1,2, . . .  d ) .  (6.1) 

B=I 

The non-trivial magnetic group 

mE(H)= H + HL 2 , L_  G,  (6.2) 

is the symmetry group of the spin arrangement S~ if 
and only if the matrices of the restriction of F to L, and 
no other matrices of F, have the property that for all 
elements of H 

F(H)p,=6B~ (6.3) 
and 

F(HLz)~r= - ~  (6.3') 

where ), is fixed and/3 = 1,2 . . .  d. 
The condition is necessary. If mL(I-i) is the symmetry 

group of St, then for all H 

[H]S r = S t ,  (6.4) 

[HL~]Sr=S r or [ H L 2 ] S r = - S  r .  (6.4') 

Substituting this in (6.1) for G belonging to L, one 
obtains 

Z Sp(r(H)B,- aP~) = 0, 
# 

and 
Sp(r(HL2)B, + ap,) = 0 

wherefrom (6.3) and (6.3') follow immediately. 
The condition is sufficient. If (6.3) and (6.3') hold 

then (6.1) implies (6.4) and (6.4'), which means that 
all elements of the two cosets in (6.2) are symmetry 
elements of S r Q.E.D. 

It should be clear from this proof that the theorem 
remains valid, and becomes C2-C1 linking theorem, 
if one replaces mL(H)by H and at the same time omits 
equation (6.3'). 

It should also be clear that the theorem remains 
valid for E'-odd scalar functions if one replaces in its 
formulation and proof the spin arrangements by such 
functions; and for any scalar function, if mL(H) is re- 
placed by H and equation (6.3') dropped. 
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The C2-C 1 linking theorem shows how to find, from 
a C2 label, the symmetry group (appearing in the C 1 
label) of a (E'-even or E'-odd) scalar or vector function 
specified by such label. The C2-C1' linking theorem 
shows how to find, from a C2 label of an E'-odd func- 
tion or a spin arrangement, the magnetic symmetry 
group (appearing in the C 1' label) of that function or 
spin arrangement. In both cases according to the con- 
vention introduced in § 5 one has only to specialize 
the linking theorem for the case 7 = 1. 

The converse question, how to determine from a 
given C 1 label the representation F which appears in 
the C2 label, has already been answered in part A of 
§ 5, where we have indicated how to find the represen- 
tation FH associated with a scalar function or spin 
arrangement whose symmetry group is H. If in the case 
of spin arrangement (or E ' -odd function) the C 1' label 
rather than C 1 label is given, the question of finding 
the representation F in the C2 label is answered by ob- 
serving that if me(H) appears in the C I '  label then H 
will appear in the corresponding C 1 label. 

From the above discussion it should be clear in 
what precise mathematical sense C 1' and C2 are equi- 
valent. 

We next illustrate these general statements concer- 
ning the link between classifications C I' and C2 of 
spin arrangements with a few examples. 

Example 1 
A mathematically almost trivial but important ex- 

ample of the general link between C 1' and C2 just 
described is provided by the case where the C2 label 
of a spin arrangement is [G; Fau(DG); S(rl)], where 
Falt(D G) is the alternating representation of G in which 
+ 1 corresponds to the elements of the subgroup D a 
of index 2 in G. Then, according to the C2-C 1' linking 
theorem, the C 1' label of the same spin arrangement is 
[G; mG(DG); S(rl)]. Conversely, this C I '  label implies 
that the permutation representation PDG of G is of 
dimension 2, and (since Sl(r)= - S z ( r ) ~  0 in this case) 
that the representation FDG associated with the spin 
arrangement is Falt(D G) as indicated in the C2 label. 

This case is important because many actual mag- 
netic structures can be assigned such simple C1' or 
C2 labels. 

In this connexion we want to emphasize that (as is 
clear from the C 1' and C2 classification labels) neither 
a magnetic space group by itself in the case of C 1', nor 
a representation of the space group of the crystal by 
itself in the case of C2, are sufficient to characterize a 
spin arrangement completely. Therefore the well-known 
one-to-one correspondence pointed out by Niggli 
(1959), between the alternating representations of a 
space group and its subgroups of index 2 (and, hence, 
the magnetic space groups of its 'family'), and repea- 
tedly used by Bertaut (1968), is sufficient to establish the 
link between C 1' and C2 only in the special case con- 
sidered in this example, but not in general. In fact 
Bertaut concludes that this is the only case for which 

the classification C I' by means of magnetic space 
groups is at all possible, and he arrives in this way at 
the point of view expressed in the passage quoted in 
§1. 

The next two examples are those of the magnetic 
structures discussed by Bertaut and his collaborators 
from the point of view of cllassfication C2. We shall 
see that these structures are characterized by magnetic 
space groups irt the sense of C 1', although they belong 
to two-dimensional representations in the sense of C2. 

In the sequel, the symbol (Ga, Gb, . . .  )will  denote 
the group generated by the elements Ga, Gb, . . . .  

Example 2 
We consider the spin arrangement of the Tb spins 

in TbCrO3 (Bertaut, Mareschal & de Vries, 1967). In 
this case 

G=Pbnm=((2z), (2u), i ) ,  

where here, and in what follows: 

(2.)=(2.1½½0), (2u)-- (2u12~½), 
(2z)=(2z]O0½), ]=(T[O00), b=(m.]~2-O), 

__ 1 1 1  = ( m ~ 1 0 0 1 )  , n--(my]-~),  m 

The Tb atoms are all located at the positions obtained 
from rl = (x,y,¼) by applying to it all elements of Pbnm. 
Further, G(rl)= (rn) is of order 2. Hence 

G =  ~ (llt){(m)+(2~)(m)+(Zy)(m)+T(m)}. 
t 

Write t =  (nln2n3) and choose 

r2= ] r l + ( l l l ) = ( 1 - x , l - y , ¼ )  
r3 = (2z)rx + (001) = (½ + x,½-- y,¼) 
r4=(2y)rl = (½-- x,½ +y,¼) 

T-'ff~e Tb-spin arrangement is then given by: 

S(r~ + t ) = ( -  1)n2(A,B,0), 
S ( rz+ t )=( -1)n2(A,B,0) ,  S(r3+t)=(-1)nz( ,g,B,0) ,  

S ( r  4 + t ) = ( -  1)nz(A,/~,0). 

Here (A. B, 0) are the components of S(r~); A '=-A,  
B = - B .  To assign the C I' label to this spin arrange- 
ment, we first determine its magnetic group ML(H). 
We find 

ML(H)  = (H,L~) = P2b 2~ nm' 
---- (((2.)(11010),n,(11020)),(11010)') ; 

this means that L=P2~nm, and 

G = L + L ( T I 1 1 1 )  

Grx = Lr l  + Lr2, 1" = l '  = 2 .  

The spin vectors S(r l )=S(r2)= (A,B,O) are admissible 
at rl and r2 respectively. The C 1' label of the Tb spin 
arrangement is thus, according to (4.18), as follows" 

[Pbnm; P2t,2'anm'; S(rl)=S(rz)=(A,B,0)] .  

A C 27A - 6* 
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Given this label, the Tb magnetic structure can be 
completely reconstructed by means of (4.16). 

Next we assign the C2 label to the same magnetic 
structure. We use equation (5.4) with G and H as just 
defined, and 

62=(]1000),  G3=(11010), Ga=(TI010). 

Hence, according to (5.3s), 

$1 (r) = S(r) ,  S2(r) = [(TI000)]S(r), 
S3(r)=[( l l0-10)]S(r) ,  S4(r)=[(TI010)]S(r), 

or, explicitly, 

S,(r j+t)=(-1)n2S~(r~) a, j=1,2,3,4 

where 

Sl(rl) = Sl(r2)= (A,B,0), 51(r3): - Sl(r4) = (~z/,B,0), 
S2(r~) = S2(rz)= (~f,/~,0), $2(r3) = - $2(r4) = (A',B,0), 
S3(r) = - S l ( r ) ,  
S4(r) = -S2( r ) .  

These 4 spin arrangements transform according to 
the permutation representation PH of G. Since only 2 
of them are linearly independent, the representation 
FH of G associated with S(r) will be two-dimensional. 
We choose as its (orthogonal) basis Sl(r)=S(r)  and 
S2(r). By applying to these two spin arrangements the 
three generating elements of Pbnm specified earlier, we 
obtain after some calculation the matrices of FH which 
correspond to these three elements. They are the same, 
apart from an equivalence transformation, as those 
found by Bertaut, Mareschal & de Vries (1967). The 
representation FH is irreducible. According to (5.19) 
the C2 label is thus: 

; 

$1 (r 1) = - S2(r 1) = (A,B,0) ] 

Given this label, the Tb structure can completely be 
reconstructed, using (5.17); if one only wants to deter- 
mine its magnetic symmetry group from the C2 label, 
the C2-C 1' linking theorem is sufficient. 

Example 3 
We next consider the spin arrangement of the Dy 

spins in DyCrO3 (Bertaut & Mareschal, 1968). The 
space group G of the crystal is in this case the same as 
that of TbCrO3, and the positions Gr~ occupied by the 
Dy atoms are again those obtained by taking r l =  
(x,y,¼), only the numerical values of x and y being 
different. Therefore we may and shall use the notations 
of example 2. The Dy spin arrangement is then given 
by 

S(rl + t )= ( - -  1)n'+nz(A,B,O), 
S(r2 + t) = ( -  1)na+n2(~f,B,0), 

S(r3 + t) = ( - l)n' +n2(B,A',0), 
S(r4 + t ) = ( -  1)nx+nz(B,A,O). 

By following the same procedure as in example 2 we 
find for this spin arrangement the C 1' label: 

[Pbnm; P2,~21/m; S(rl)=(A,/~,0), S(r3)=(B,A,0)], 

where 

PE.2,/m = ( ((2~),(TI 100),( 11110),(11200), ),(11100)'), 

and the C2 label: 

The representation FH occurring in this C2 label is 
reducible into two complex one-dimensional represen- 
tations, which are those found by Bertaut & Mareschal 
(1968). The reduction is obtained by means of an equi- 

( 1 _;). valence transformation given by the matrix \ 

Example 4 
Here we consider a case of a helical spin arrange- 

ment, the 'double helix' in the metamagnetic phase of 
MnP (Felcher, 1966; Bertaut, 1969). The space group 
G of the crystal, and the positions Grl occupied by the 
Mn atoms are (apart from their numerical values) the 
same as in examples 2 and 3. Therefore we use the same 
notation as in those two examples. The CI '  label of 
the doable helix spin arrangement is then: 

[Pbnm; p l ;  S(r, + t n l ) =  R2'~tS(rl), 
S(r3 + tnl ) - -  R 2 n l - I - l ( r l )  " S(r 4 + tnl)= R~nlS(r4) 
S(r2 + tnl ) = --~,R2nl + 1S(r4); S(r4) = R~,S(rl) ] 

where 

p l  = ((11010),(11001)), t~a = (ml00) 

and R~, is a rotation through ~ about the x axis. [For 
a discussion of the numerical value of ~, see Felcher 
(1966)]. Instead of an infinity of spin vectors, the C I '  
label specifies just two spin vectors, S(rl) and S(r4), a 
relation between them, and indicates how an infinite 
rotation group (generated by R~, and R~, -1) determines 
all the other spin vectors; for more details on this 
way of describing helical spin arrangements, see Ope- 
chowski & Guccione (1965), § IV, 2,h. 

As far as the C2 label is concerned, there are two 
possibilities: either to assign the infinite-dimensional 
permutation representation of Pbnm generated by p 1, 
or to introduce cyclic boundary conditions and in this 
way reduce the problem to the standard form discussed 
i n§5 .  

After having dealt with examples of spin arrange- 
ments, we want to make a few more general remarks. 
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Using the C2-C 1' linking theorem, one easily finds 
that the symmetry groups of the two spin arrangements, 
Sl(r) and S2(r) in example 2 above are conjugate sub- 
groups of 13=Pbnm; or, in other words, that the 
magnetic symmetry groups of S~(r) and Sz(r) are con- 
jugate subgroups of 13 x A =  Pbnm 1'. For this reason 
the two spin arrangements may be regarded as not 
essentially different. Each of them can be used to de- 
scribe the same physical situation if appropriate con- 
ventions are introduced; or, if one prefers, one may say 
with Bertaut (1968, page 226) 'that they provide an 
equivalent description of the same physical reality.' 

In general, however, it is not true that the spin ar- 
rangements which constitute the basis of an irreducible 
representation F of (3 have symmetry groups which are 
conjugate subgroups of (3. These symmetry groups 
need not even be isomorphic, as is illustrated by exam- 
ple 5 below. True is only the statement that it is always 
possible to find a basis with that property (but then 
such basis may not be orthogonal). This can be seen 
as follows. The symmetry groups of the h' spin ar- 
rangements Su(r ) defined by (5.3s) are G~ -1 H G~, where H 
is the symmetry group of St(r). Therefore they are con- 
jugate subgroups of G. If the dimension of FH is d, 
then exactly d of the h' spin arrangements St(r) will 
be linearly independent. If we choose these d spin ar- 
rangements as a basis of the carrier space of FH, then 
this particular basis will have the required property. 

Example 5 
For simplicity we consider an 'octahedral' molecule 

(6 atoms). Its symmetry group 13 is m3m=<4z,3,T>. 
We choose r~ ¢ 0  on the 4z-axis; then 13(r~) =-4z2m, and 

6 

G =  ~ GlcG(rl), 
k----1 

where 

G1 = 1 , G6= 1 , Gm+ 2=4m3 (m =0,1,2,3). 

We suppose the following irreducible unitary repre- 
sentation of m3m is given: 

F(4z) = . i , /-'(3) =½ -11 , 

11 i) 
The restriction of F to -4z2m is no longer irreducible; it 
contains the identity representation, and the corres- 
ponding invariant vector has the components a~ -- I/1/'2, 
a2 = a3----0. Substituting these components, and the ele- 
ments of the matrices of F in (5.21) one obtains the 
three functions (oI, (o2, (,o3 which form an orthogonal 
basis in the carrier space of F. Their values are arranged 
into the following self-explanatory Table, in which 
rk=ak r l  (k= l ,2 ,  . . .  6): 

rl r2 r3 r4 r5 r6 
1/2(O1= 1 0 0 0 0 -- 1 

2(02---- 0 1 1 -- 1 -- 1 0 
2(o3 = 0 1 -- 1 -- 1 1 0 

The symmetry group of (Oj is '4z2m (order 8); the sym- 
metry groups of (OE and (O3 are conjugate subgroups of 
m3m, both belonging to the class mm2 (order 4). 

What is then our conclusion? Is the classification 
C2 as general as C 1', that is, has every spin arrange- 
ment, however low its symmetry may be, its appropri- 
ate label in C2? If one is willing to impose the usual 
cyclic boundary conditions on the crystal, the answer 
to this question is 'yes', C2 and C l '  are rigorously 
equivalent. If one is not, then the answer is 'possibly, 
yes'. For, in the latter case, a mathematically rigorous 
answer would require a study of certain infinite-dimen- 
sional reducible representations of space groups, which 
we have not done. However, for the class of all those 
spin arrangements whose magnetic symmetry groups 
contain some three-dimensional discrete group of trans- 
lations as a subgroup, it is not necessary to introduce 
cyclic boundary conditions to prove the rigorous equiv- 
alence of C I' and C2; but this class does not com- 
prise the helical spin arrangements. 

Is one of the two classifications preferable? The 
answer to this question will evidently depend on what 
one wants to use a classification for. If, however, the 
purpose which the classification labels are to serve is 
not specified, then C 1' is preferable to C2 for the sim- 
ple reason that it takes fewer steps (for example, in the 
sense of a computer program) to assign a C 1' label to a 
given spin arrangement than to assign to it a C2 label. 

Although each magnetic structure has its label in 
both, C 1' and C2 (in the latter case, subject to the qual- 
ification just mentioned), it is obvious that for cer- 
tain, possibly hypothetical, magnetic structures both 
classifications become of doubtful value. For example, 
this would be so ira spin arrangement on a simple crystal 
were a superposition of two (or more) substructures 
of which one has high symmetry, and in the other the 
spin vectors were oriented partially at random. For 
all such cases a classification which makes allowance for 
a probability distribution of spin vectors would be 
more appropriate. 

We are indebted to Dr M. Boon for a discussion 
of infinite-dimensional representations of space groups. 
This work was supported in part by the National Re- 
search Council of Canada. One of the authors (TD) 
wishes to thank the Canada Council for a 'bourse de 
perfectionnement'. 
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Quasi-Harmonic Analysis of the Thermodynamic Data for Gold and an Estimate of OM(T) 
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The moments of the Au frequency spectrum have been calculated in the usual manner from available 
thermodynamic data. These results are expressed in terms of the effective Debye temperatures, OD(n). 
Unlike many materials, the values of OD(n) for Au increase monotonically with increasing n. Values of the 
characteristic temperature associated with the Debye-Waller factor are determined [O~(0, V0) = 171 + 2 °K 
and O~(300, Vs00)= 163 +_ 1 °K], and the temperature dependence of O~V~(7", Va-) is estimated. Our results 
are compared with recent M6ssbauer and X-ray data. The comparison with the M6ssbauer measure- 
ments, which were performed at 4.2< T_< 100°K., yields a value of ~4.4 for the internal conversion 
coefficient, e, for the 77 keV, ~-ray line of Au 197, this agrees well with a recent independent determination 
of a=4.23 +0.09. However, our results for OM(T, VT) disagree, to within quoted estimates of error, 
with the results of published X-ray measurements. It is suggested that additional X-ray experiments 
extending to low temperatures would help to resolve these discrepancies. 

Introduction 

It is well known that  the moments  of  the frequency 
spectrum can be determined, within the quasi-har- 
monic approximation,  f rom an analysis of  thermody- 
namic data;  also, the Debye-Wal le r  factor or its effec- 
tive Debye temperature,  OM(T, VT) can be estimated 
with reasonable accuracy from these moments.  Our 
results for OM(T,V~) may be compared to very recent 
M6ssbauer  measurements  and to previously published 
X-ray determinations of the Debye-Wal le r  factor. We 
mention that Au was of special interest because relevant 
experiments for Au indicate that at room temperature, 
O M is greater than the Debye temperature determined 
f rom elastic constants, Ok; this is contrary to what is 
found in other studied materials, as noted by Synecek, 
Chessin & Simerska (1970). 

Calculations 

The moments  of  the frequency spectrum are defined 
as follows: 

f - ~ =  {conG(o~)d~ G(~) &o, (1) 
0 o 

where G(~) is the lattice frequency distribution func- 
tion. These moments  can be related to an effective 
Debye temperature, O°(n): {1 },, 0O(n ) = h (n + 3)m n n > - 3 ,  (2) 

~:- ' n # 0  

where h and k have their usual meaning and the limits 
n - - -  3 and 0 exist. Low-temperature specific heat or 
elastic-constant data yield a value for 0 0 ( - 3 )  and 
Barron, Berg & Morrison (1957) have shown how the 


